

Quest for a Global Influenza Vaccine Solution

Rahul Singhvi President & CEO Novavax, Inc

International Vaccine Technology Workshop Hyderabad, India 18 September, 2010

Attributes of a Global Vaccine Solution

- □ Safe and immunogenic vaccine
- □ Rapid-response manufacturing technology
- □ Scaleability (Surge capacity)
- Economics
- □ Global Accessibility for in-border manufacturing
 - Cost and time to set up indigenous manufacturing
 - □ Ability to transfer technology

Mexico H1N1 Study

Rockville Plant

Recombinant Virus like Particle (VLP) Technology

- Select proteins important for inducing neutralizing antibody and CMI
 - Surface hemagglutinin (HA)
 - Neuraminidase (NA)
 - Matrix (M1)

Genes coding for the HA, NA, and M proteins are put into baculovirus

Infect cell culture (Sf9) with baculovirus

Baculovirus-infected Sf9 Cells

Proteins (HA, NA, M1) spontaneously form

VLP is a Proven Vaccine Technology

VLP vaccines approved by U.S. Food and Drug Administration

- Hepatitis B vaccines (recombinant)
 - Recombivax® HB (Merck)
 - Engerix[®] B (GSK)
 - Multiple others
- Human papillomavirus vaccines (recombinant)
 - Gardasil® (Merck)
 - Cervarix® (GSK)

FDA approved vaccines produced using insect cells and baculovirus expression

- Cervarix[®] (GSK)
- Provenge[®] (Dendreon)

Potential Immunological Advantages of VLPs

- HA neutralizing Ab prevents infection
- NA neutralizing Ab prevents virus release and cell spread
- HA and NA No changes from egg or mammalian cell culture adaptation increasing genetic match
- VLPs Potential for improved immune responses and broader protection

Attributes of a Global Vaccine Solution

- □ Safe and immunogenic vaccine
- □ Rapid-response manufacturing technology
- □ Scaleability (Surge capacity)
- Economics
- □ Global Accessibility for in-border manufacturing
 - Cost and time to set up indigenous manufacturing
 - □ Ability to transfer technology

Mexico H1N1 Study

Rockville Plant

VLP Technology Responds Fast

(2009 Pandemic H1N1 - Case Study)

	Task Name	Start	Finish		April 2009						May 2009 3 9 10 11 12 13 14 15 16 17 18 19 20																			
	1 ask Ivallie	Start	Pillisii	24	25	26	27	28	29	30	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19 2	0
1	Viral genes A/CA/04/09 received from CDC	4/24/09	4/28/09																											
2	A/CA/04/09 genes cloned	4/29/09	5/4/09																											
3	Recombinant baculovirus generated	5/5/09	5/10/09																											
4	VLP production for preclinical study	5/11/09	5/14/09																											
5	HA reagent production	5/15/09	5/19/09																											

- VLP vaccines can be produced in a fraction of the time of competing technologies
 - GLP batch produced in 4 weeks for ferret study
 - cGMP batch produced in 11 weeks
 (vs. 4-5 months for competing technologies)

A/California/04/09 VLPs and Influenza Virus Particles

H1N1 VLPs

H1N1 Virus

H1N1 2009 Influenza VLP Vaccine Mexico Trial

- A/California/04/2009 VLPs
- 5, 15, 45 μg/0.5 mL IM dose
- No adjuvant
- No preservatives
- Stored 2 − 8º C

H1N1 2009 Influenza VLP Vaccine Mexico Study

Stage A

Endpoints:

- 1. All Adverse Events (AEs) through 3 wks post-dose (PD)2
- 2. Serious AEs through 6 months PD2
- 3. HAI assays Predose 1, 2 wks PD1, 2 wks PD2
- 4. Exploratory: MN and NAI assays

N=1000 (750 VLP/250 Placebo)

Stage B

Endpoints:

 Safety, including unsolitcited AEs, doctor's office visits, hospitalizations, meds, and SAEs through 6 months PD2 N=3500 (3000 VLP/500 Placebo)

Local Events after First Dose

■Placebo	■NVX754	■NVX754	■NVX754
	5 mcg/strain	15 mcg/strain	45 mcg/strain

Systemic Events after First Dose

■ Placebo ■ NVX754	■NVX754	■NVX754
5 mcg/strain	15 mcg/strain	45 mcg/strain

NOVAVAX
Creating Tomorrow's Vaccines

Final Day 14 HAI Results from Part A

		Percent (95% CI) with Response by Vaccination Group (n=963 pp)							
Strain	HAI Parameter	5 ug n=236	15 μg n=242	45 μg n=243	Placebo n=242				
	% <u>></u> 4-fold rise	48.5 * (<u>41.9</u> -55.1)	64.7* (<u>58.3</u> -70.8)	75.2* (<u>69.2</u> -80.6)	5.9 (3.3-9.7)				
H1N1	% <u>≥</u> 1:40	81.5** (<u>76.0</u> -86.3)	90.5** (<u>86.0</u> -93.9)	91.6** (<u>87.3</u> -94.8)	40.1 (33.8-46.6)				
A/Cal/04/ 2009	GMT	87.4 (74.4-102.6)	138.4 (119-161)	173.1 (146.6-204.4)	23.7 (20.1-27.8)				
	GMR	4*** (3.4-4.7)	6.6*** (5.6-7.8)	8.7*** (7.3-10.4)	1.2 (1.0-1.3)				

^{*} Meets FDA guidelines for seroconversion—lower 95% CI ≥ 40%

^{**} Meets FDA guidelines for seroprotection—lower 95% CI \geq 70%

^{***} Meets EMEA guidelines for GMT Post:Pre ratio ≥ 2

Conclusions – Mexico Study

The 2009 H1N1 VLP was well tolerated

- Local and systemic reactogenicity similar to placebo
- No drug-related severe or serious adverse events reported

Immunogenicity responses at Day 14 post dose 1

- Above the lower bound 95% CI for both seroconversion (40%) and seroprotection (70%) at 5, 15 and 45 mcg levels
- 5 mcg dose was safe and immunogenic
- 15 mcg appears to be the optimal dose to provide coverage to broader age range and was selected for further testing in Stage B

Speed of VLP platform technology was demonstrated with production of a cGMP vaccine batch within 11 weeks

Attributes of a Global Vaccine Solution

- □ Safe and immunogenic vaccine
- Rapid-response manufacturing technology

Mexico H1N1 Study

- □ Scaleability (Surge capacity)
- Economics

Rockville Plant

- Cost and time to set up indigenous manufacturing
- □ Ability to transfer technology

VLP Vaccine Production Plant in Rockville, MD

- 10,000 ft²
- Class C HVAC System (Class B for Seed Prep)
- Capacity from
- 1 x 200L and 1 x 1000L (up to 3 x 1000L)
- Operational at 1000L

Demonstration of

Surge Economics Modular prototype

Manufacturing VLPs in Insect Cells

Insect Cell Culture-Based Flu Vaccine Production using a mix of disposable & traditional Systems

Surge Capacity

- Cell culture to bulk vaccine: 3 weeks
- Cycle time at steady state: 9 days
- Productivity achieved: Greater than 1,000,000 doses (15 mcg) per 1000-L reactor

Influenza Vaccine Production Capacity Modular & Portable Approach

Traditional Flu Vaccine Production:

- Large, central manufacturing facilities
- Supported by complex site infrastructure
- ~100M doses capacity for economy of scale
- Cost: \$150 \$600M per plant

Insect Cell Culture-Based Flu Vaccine Production:

- · Distributed manufacturing
- Facility where vaccine is needed
- Requires little local infrastructure
- 10 50 M dose plants
- COGS not dependent of scale
- Cost: 10-20% of traditional facility

Attributes of a Global Vaccine Solution

- □ Safe and immunogenic vaccine
- Rapid-response manufacturing technology
- □ Scaleability (Surge capacity)
- Economics
- □ Global Accessibility for in-border manufacturing
 - Cost and time to set up indigenous manufacturing
 - □ Ability to transfer technology

Mexico H1N1 Study

Rockville Plant

International Technology Transfer

Success Factors for Tech Transfer

- Less dependence on fixed, integrated equipment & facility
- Portable, reproducible process
- Process and product characterization assays
- Simultaneous process and assay transfer
- Process validation

The CPL Biologicals Case Study

Technology Transfer to India

- Novavax formed Joint Venture with Cadila Pharmaceuticals Ltd (March 31, 2009)
- Influenza VLP Process Technology Transfer Initiated (May, 2009)
- Facility Design Initiated (June, 2009)
- Facility Ground Broken (November, 2009)
- Facility Expected Completion (May, 2010)
- Process, Analytical Transfer Ongoing in Parallel
- Facility Commissioning and Validation (July, 2010)

Implementation of a new functional modular facility ready within 1 year

Ground Floor Plan

NOVAVAX
Creating Tomorrow's Vaccines

Progress Towards our Quest for a Global Influenza Vaccine Solution

After over \$100MM investment!

- Safe and immunogenic vaccine
 - □ Rapid-response manufacturing technology

Mexico H1N1 Study

- Scaleability (Surge capacity)
 - Economics

Rockville Plant

- Global Accessibility for in-border manufacturing
 - Cost and time to set up indigenous manufacturing
 - □ Ability to transfer technology

Thank You

Budding Influenza Virus

Virus-Like Particle

